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Abstract

This paper investigates free vibration and dynamic instability of functionally graded cylindrical panels
subjected to combined static and periodic axial forces and in thermal environment. Theoretical
formulations are based on Reddy’s higher order shear deformation shell theory to account for rotary
inertia and the parabolic distribution of the transverse shear strains through the panel thickness. Thermal
effects due to steady temperature change are included in the analysis. Material properties are assumed to be
temperature dependent and graded in the thickness direction according to a power-law distribution in terms
of the volume fractions of the constituents. The panel under current consideration is clamped or simply
supported on two straight edges and may be either free, simply supported or clamped on the curved edges.
A semi-analytical approach, which takes the advantages of one-dimensional differential quadrature
approximation, Galerkin technique and Bolotin’s method, is employed to determine the natural frequencies
and the unstable regions of the panel. Numerical results for silicon nitride/stainless-steel cylindrical panels
are given in both dimensionless tabular and graphical forms. Effects of material composition, temperature
rise, panel geometry parameters, and boundary conditions on free vibration and the parametric resonance
are also studied.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Due to the advantages of being able to withstand severe high-temperature gradient while
maintaining structural integrity, functionally graded materials (FGMs) have been receiving much
more attention in engineering communities, especially in high-temperature applications such as
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nuclear reactors, space planes and chemical plants [1,2]. FGMs are microscopically inhomoge-
neous composites usually made from a mixture of metals and ceramics. By gradually varying the
volume fraction of constituent materials, their material properties exhibit a smooth and
continuous change from one surface to another, thus eliminating interface problems and
mitigating thermal stress concentrations. FGMs now have been regarded as one of the most
promising candidates for future intelligent composites in many engineering sectors such as
aerospace, fast computers, biomedical industry, environmental sensors, etc.

Despite the evident importance in practical applications, investigations on the dynamic
characteristics of FGM shell structures are still limited in number. Among those available, Loy
et al. [3] investigated the free vibration of simply supported FGM cylindrical shells, which was
later extended by Pradhan et al. [4] to cylindrical shells under various end supporting conditions.
Gong et al. [5] presented elastic response analysis of simply supported FGM cylindrical shells
under low-velocity impact. By using the finite element method and Fourier transformation
technique, Han et al. [6] solved the wave motion in a FGM cylinder. Ng et al. [7] studied dynamic
instability of simply supported FGM cylindrical shells, a normal-mode expansion and Bolotin’s
method were used to determine the boundaries of the unstable regions. In all the above studies, it
was assumed that material properties follow a through-thickness variation according to a power-
law distribution in terms of the volume fractions of constituents. Theoretical formulations were all
based on classical shell theory, i.e., neglecting the effect of transverse shear strains. Temperature
dependency of the material properties was also considered, but their numerical results were only
for a simple case of an FGM shell in a fixed thermal environment.

In the present analysis, free vibration and dynamic instability of FGM cylindrical panels under
combined static and periodic axial forces are studied by using a proposed semi-analytical
approach. Material properties of the constituents are assumed to be non-linear functions of
temperature, and graded in the thickness direction according to a power-law distribution. Reddy’s
higher order shear deformation shell theory [8] is employed to include the effects of rotary inertia
and the parabolic distribution of the transverse shear strains through the panel thickness. The
panel may be clamped or simply supported on two straight edges while the remaining two loaded
curved ones may be free, simply supported or clamped. A uniform temperature change is
considered. Comprehensive numerical results are provided for panels made from a mixture of
silicon nitride and stainless steel. A parametric study is also undertaken, giving insight into the
effects of material composition, temperature rise, axial load, boundary conditions as well as panel
geometry parameters on both vibration characteristics and parametric resonance.

2. Theoretical formulations

2.1. FGM material properties

An FGM cylindrical panel with its co-ordinate system (X ;Y ;Z) is shown in Fig. 1, where X
and Y are in the axial and circumferential directions of the panel and Z is in the direction of the
inward normal to the middle surface. The origin of the co-ordinate system is located at the corner
of the middle plane. The panel is of radius R; thickness h; axial length a and arc length b: We
assume that the panel is made from a mixture of ceramics and metals, and the material
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composition is continuously varied such that the top surface (Z ¼ �h=2) of the panel is ceramic
rich, whereas the bottom surface (Z ¼ h=2) is metal rich. Thus, the effective material properties P;
such as Young’s modulus E; the Poisson ratio n; mass density r and coefficient of thermal
expansion a can be expressed as

P ¼ PtVc þ PbVm; ð1Þ

in which subscript ‘t’ and ‘b’ refer to the top and bottom surfaces of the panel, respectively, Vc and
Vm are the ceramic and metal volume fractions, and are related by

Vc þ Vm ¼ 1: ð2Þ

The ceramic volume fraction Vc is assumed to follow a power-law distribution as

Vc ¼
h � 2Z

2h

� �n

; ð3Þ

where volume fraction index n characterizes the material variation profile through the panel
thickness and may be varied to obtain the optimum distribution of component materials. From
Eqs. (1)–(3), the effective Young’s modulus E; the Poisson ratio n; mass density r; and thermal
expansion coefficient a of an FGM panel can be expressed as

E ¼ ðEt � EbÞ
h � 2Z

2h

� �n

þEb; ð4aÞ

n ¼ ðnt � nbÞ
h � 2Z

2h

� �n

þnb; ð4bÞ

a ¼ ðat � abÞ
h � 2Z

2h

� �n

þab; ð4cÞ

Fig. 1. Configuration of a functionally graded cylindrical panels and its co-ordinate system.
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r ¼ ðrt � rbÞ
h � 2Z

2h

� �n

þrb: ð4dÞ

Since functionally graded structures are most commonly used in high-temperature environment
where significant changes in mechanical properties of the constituent materials occur [9], it is
essential to take this temperature dependency into consideration for accurate prediction of the
mechanical response. Therefore, Et; Eb; nt; nb; rt; rb; at and ab are functions of temperature as well,
as will be shown in Section 4. This makes E; n; r and a both temperature and position dependent.

Thermal force resultants, thermal moment resultants and higher order thermal moment
resultants due to temperature rise DT are defined by

%NT
X

%MT
X

%PT
X

%NT
Y

%MT
Y

%PT
Y

%NT
XY

%MT
XY

%PT
XY

2
64

3
75 ¼

Z h=2

�h=2

AX

AY

AXY

2
64

3
75 ð1;Z;Z3ÞDT dZ; ð5Þ

where

AX

AY

AXY

2
64

3
75 ¼ �

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

2
64

3
75

1 0

0 1

0 0

2
64

3
75 a

a

" #
; ð6Þ

and

Q11 ¼ Q22 ¼
E

1 � n2
; Q12 ¼

nE
1 � n2

;

Q16 ¼ Q26 ¼ 0; Q44 ¼ Q55 ¼ Q66 ¼
E

2ð1 þ nÞ
: ð7Þ

Various inertias are calculated by

ðI1; I2; I3; I4; I5; I7Þ ¼
Z h=2

�h=2
ðrt � rbÞ

h � 2Z

2h

� �n

þrb

� 
ð1;Z;Z2;Z3;Z4;Z6Þ dZ: ð8Þ

2.2. Governing equations

We designate %U; %V and %W as the displacements in X ; Y and Z directions, %CX and %CY as the
rotations of normals to the middle surface with respect to the Y- and X-axis, respectively. Let
%FðX ;Y Þ be the stress function for the stress resultants, so that %NX ¼ %F;YY ; %NY ¼ %F;XX ; %NXY ¼
� %F;XY ; where a comma denotes partial differentiation. Suppose the panel is initially stress free at
temperature T0; and then may be subjected to a uniform temperature rise DT and a periodically
pulsating load in axial direction

pX ðtÞ ¼ ps þ pd cos yt; ð9Þ

where ps is a time invariant component and pd cos yt is the harmonically pulsating component, y
denotes the frequency of excitation.
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Based on Reddy’s higher order shear deformation theory to account for the effects of rotary
inertia and parabolic distribution of the transverse shear strains through thickness, the equations
of motion for FGM cylindrical panels can be derived using Donnell’s shell theory

*L11ð %WÞ � *L12ð %CX Þ � *L13ð %CY Þ þ *L14ð %FÞ � *L15ð %NTÞ � *L16ð %MTÞ �
1

R

@2 %F

@X 2

� pX
@2 %W

@X 2
� pY

@2 %W

@Y 2
¼ �I1

.%W � *I5
@ .%CX

@X
� *I 0

5

@ .%CY

@Y
� *I7

@2 .%W

@X 2
� *I 0

7

@2 .%W

@Y 2
; ð10Þ

*L21ð %FÞ þ *L22ð %CX Þ þ *L23ð %CY Þ � *L24ð %WÞ þ
1

R

@2 %W

@X 2
� *L25ð %NTÞ ¼ 0; ð11Þ

*L31ð %WÞ þ *L32ð %CX Þ � *L33ð %CY Þ þ *L34ð %FÞ � *L35ð %NTÞ � *L36ð %STÞ ¼ � *I3
.%CX þ *I5

@ .%W

@X
; ð12Þ

*L41ð %WÞ � *L42ð %CX Þ þ *L43ð %CY Þ þ *L44ð %FÞ � *L45ð %NTÞ � *L46ð %STÞ ¼ � *I 0
3
.%CY þ *I 0

5

@ .%W

@Y
; ð13Þ

where %ST ¼ %MT � c1 %P
T; c1 ¼ 4=3h2; and all linear operators are defined as in Ref. [10]. A super

dot implies differentiation with respect to time, and

*I3 ¼ %I4 � ð %I2Þ
2= %I1; *I 0

3 ¼ %I 0
4 � ð %I 0

2Þ
2= %I 0

1;

*I5 ¼ %I5 � %I2 %I3= %I1; *I 0
5 ¼ %I 0

5 � %I 0
2
%I 0
3= %I

0
1;

*I7 ¼ ð %I3Þ
2=I1 � c2

1I7; *I 0
7 ¼ ð %I 0

3Þ
2=I 01 � c2

1I7;

%I1 ¼ I1; %I 0
1 ¼ I1 þ 2I2=R;

%I2 ¼ I2 � c1I4; %I 0
2 ¼ I2 þ I3=R � c1I4 � c1I5=R;

%I3 ¼ c1I4; %I 0
3 ¼ c1ðI4 þ I5=RÞ;

%I4 ¼ %I 0
4 ¼ I3 � 2c1I5 þ c2

1I7; %I5 ¼ %I 0
5 ¼ c1I5 � c2

1I7: ð14Þ

It is evident that *L15ð %NTÞ ¼ *L25ð %NTÞ ¼ *L35ð %NTÞ ¼ *L45ð %NTÞ ¼ *L16ð %MTÞ ¼ *L36ð %STÞ ¼ *L46ð %STÞ ¼ 0
when the temperature field varies through the panel thickness only.

Two cases of boundary conditions are considered in the analysis according to the in-plane
loading conditions.

Case 1: The panel is uniformly loaded in the axial direction, clamped on the two unloaded
straight edges (at Y=0, b) and may have any combination of free, simply supported or clamped
constraints on the loaded curved sides (at X=0, a).

Case 2: In the absence of axial loading, the panel is clamped or simply supported on the two
straight edges (at Y ¼ 0; b) and may have any combination of free, simply supported or clamped
constraints on the curved sides (at X ¼ 0; a).

The associated out-of-plane boundary conditions are
X ¼ 0; a:

J. Yang, H.-S. Shen / Journal of Sound and Vibration 261 (2003) 871–893 875



Simply supported (S):

%W ¼ 0; %V ¼ 0; %CY ¼ 0; %MX ¼ 0; %PX ¼ 0: ð15aÞ

Clamped (C):

%W ¼ 0; %V ¼ 0; %CX ¼ 0; %CY ¼ 0;
@ %W

@X
¼ 0: ð15bÞ

Free (F):

%V ¼ 0; %MX ¼ 0; %PX ¼ 0; ð15cÞ

%Mn

XY ¼ %MXY � c1 %PXY ¼ 0; %Qn

X ¼ %QX � 3c1 %RX � c1
@ %PX

@X
þ 2

@ %PXY

@Y

� �
¼ 0: ð15dÞ

Y ¼ 0; b:
Simply supported (S):

%W ¼ 0; %CX ¼ 0; %MY ¼ 0; %PY ¼ 0; %NXY ¼ 0: ð16aÞ

Clamped (C):

%W ¼ 0; %CX ¼ 0; %CY ¼ 0;
@ %W

@Y
¼ 0; %NXY ¼ 0 ð16bÞ

and the in-plane boundary conditions are
X ¼ 0; a: Z b

0

%NX dY þ pX b ¼ 0 ðmovableÞ or %U ¼ 0 ðimmovableÞ: ð17aÞ

Y ¼ 0; b: Z a

0

%NY dX þ pY a ¼ 0 ðmovableÞ or %V ¼ 0 ðimmovableÞ; ð17bÞ

where %MX and %MXY are the bending moments, %PX and %PXY are the higher order bending
moments, %QX and %RX stand for the transverse shear force and the higher order shear force, as
defined in Ref. [8]. Note that the immovable conditions are fulfilled in an average sense as [11, 12]

%U ¼
Z b

0

Z a

0

@ %U

@X
dX dY ¼ 0 at X ¼ 0; a; ð18aÞ

%V ¼
Z a

0

Z b

0

@ %V

@Y
dY dX ¼ 0 at Y ¼ 0; b; ð18bÞ

and the average end shortening relationships are
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DX

a
¼ �

1

ab

Z b

0

Z a

0

@ %U

@X
dX dY

¼ �
1

ab

Z b

0

Z a

0

An

11

@2 %F

@Y 2
þ An

12

@2 %F

@X 2
þ ðBn

11 � c1En

11Þ
@ %CX

@X
þ ðBn

12 � c1En

12Þ
@ %CY

@Y

��

�c1 En

11

@2 %W

@X 2
þ En

12

@2 %W

@Y 2

� ��
� An

11
%NT

X þ An

12
%NT

Y

� �
dX dY ; ð19aÞ

DY

b
¼ �

1

ab

Z a

0

Z b

0

@ %V

@Y
dY dX

¼ �
1

ab

Z a

0

Z b

0

An

22

@2 %F

@X 2
þ An

12

@2 %F

@Y 2
þ ðBn

21 � c1En

21Þ
@ %CX

@X
þ ðBn

22 � c1En

22Þ
@ %CY

@Y

��

�c1 En

21

@2 %W

@X 2
þ En

22

@2 %W

@Y 2

� ��
þ

%W

R
� ðAn

12
%NT

X þ An

22
%NT

Y Þ


dY dX : ð19bÞ

In the above equations and what follows, ½An
ij�; ½B

n
ij�; ½D

n
ij�; ½E

n
ij �; ½F

n
ij �; ½H

n
ij � (i; j ¼ 1; 2; 6), are the

reduced stiffness matrices and can be determined through relationships [10–12]

A	 ¼ A�1; B	 ¼ �A�1B; D	 ¼ D� BA�1B; E	 ¼ �A�1E;

F	 ¼ F� EA�1B; H	 ¼ H� EA�1E; ð20Þ

where

ðAij ;Bij ;Dij ;Eij;Fij;HijÞ ¼
Z h=2

�h=2
Qijð1;Z;Z2;Z3;Z4;Z6Þ dZ ði; j ¼ 1; 2; 6Þ; ð21aÞ

ðAij ;Dij ;FijÞ ¼
Z h=2

�h=2
Qijð1;Z2;Z4Þ dZ ði; j ¼ 4; 5Þ: ð21bÞ

Introducing the following dimensionless quantities:

x ¼ X=a; y ¼ Y=b; b ¼ a=b; t ¼ %t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D	

11=I1

q
=a2; o ¼ Oa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1=Dn

11

q
;

D ¼ ðDn

11Dn

22An

11An

22Þ
1=4; g0 ¼ a2=RD; W ¼ %W=D; F ¼ %F=ðDn

11Dn

22Þ
1=2;

ðCx;CyÞ ¼ ð %CX ; %CY Þa=D; ðlx; lyÞ ¼ ðpX b2; pY a2Þ=ðDn

11Dn

22Þ
1=2;

ðdx ; dyÞ ¼ ðDX=a ;DY=bÞb2=D; g14 ¼ ½D	
22=D	

11�
1=2; g24 ¼ ½A	

11=A	
22�

1=2;

g5 ¼ �A	
12=A	

22; ðgT1; gT2Þ ¼ ðAT
X ;A

T
Y Þa

2=ðDn

11Dn

22Þ
1=2;

ðMx ;My ;Mxy ;M
T
x ;MT

y ;MT
xyÞ ¼ ð %MX ; %MY ; %MXY ; %MT

X ; %MT
Y ; %MT

XY Þa
2=Dn

11D;

ðPx ;Py ;Pxy ;P
T
x ;PT

y ;PT
xyÞ ¼ c1ð %PX ; %PY ; %PXY ; %P

T
X ; %PT

Y ; %PT
XY Þa

2=Dn

11D;

ð #I3; #I 0
3; #I5; #I

0
5; #I7; #I

0
7Þ ¼ ð *I3; *I 0

3; *I5; *I
0
5; *I7; *I

0
7Þ=I1a2 ð22Þ
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in which O denotes the natural frequency of the panel, and AT
X ð¼ AT

Y Þ are defined by

ðAT
X ;A

T
Y Þ ¼ �

Z h=2

�h=2
ðAX ;AY Þ dZ: ð23Þ

Thus, the axial pulsating load can be rewritten in dimensionless form as

lx ¼ ls þ ld cos yt: ð24Þ

Also, governing Eqs. (10)–(13) can be transformed as

L11ðW Þ � L12ðCxÞ � L13ðCyÞ þ g14L14ðF Þ � g0g14
@2F

@x2
� g14b

2 lx
@2W

@x2
þ ly

@2W

@y2

� �

¼ � .W þ #I7
@2 .W

@x2
þ #I 0

7b
2 @

2 .W

@y2

� �
� #I5

@ .Cx

@x
þ #I 0

5b
@ .Cy

@y

� �
; ð25Þ

L21ðFÞ þ g24L22ðCxÞ þ g24L23ðCyÞ � g24L24ðW Þ þ g0g24
@2W

@x2
¼ 0; ð26Þ

L31ðW Þ þ L32ðCxÞ � L33ðCyÞ þ g14L34ðF Þ ¼ � #I3 .Cx þ #I5
@ .W

@x
; ð27Þ

L41ðW Þ � L42ðCxÞ þ L43ðCyÞ þ g14L44ðF Þ ¼ � #I 0
3
.Cy þ #I 0

5b
@ .W

@y
: ð28Þ

In Eqs. (25)–(28) all the dimensionless operators can be found in Ref. [10].
The out-of-plane boundary conditions (15) and (16) become
x ¼ 0; 1:
Simply supported (S):

W ¼ 0; dy ¼ 0; Cy ¼ 0; Mx ¼ 0; Px ¼ 0: ð29aÞ

Clamped (C):

W ¼ 0; dy ¼ 0; Cx ¼ 0; Cy ¼ 0;
@W

@x
¼ 0: ð29bÞ

Free (F):

Mx ¼ 0; Px ¼ 0; dy ¼ 0;

Mn

xy ¼ Mxy � c1Pxy ¼ 0; Qn

x ¼ Qx � 3c1Rx � c1
@Px

@x
þ 2b

@Pxy

@y

� �
¼ 0: ð29cÞ

y ¼ 0; 1:
Simply supported (S):

W ¼ 0; Cx ¼ 0; My ¼ 0; Py ¼ 0;
@2F

@x@y
¼ 0: ð30aÞ

Clamped (C):

W ¼ 0; Cx ¼ 0; Cy ¼ 0;
@W

@y
¼ 0;

@2F

@x@y
¼ 0; ð30bÞ
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and the dimensionless forms of the in-plane boundary conditions (17) are

x ¼ 0; 1 :

Z 1

0

@2F

@y2
dy þ lx ¼ 0 ðmovableÞ or dx ¼ 0 ðimmovableÞ: ð31aÞ

y ¼ 0; 1 :

Z 1

0

@2F

@x2
dx þ ly ¼ 0 ðmovableÞ or dy ¼ 0 ðimmovableÞ: ð31bÞ

The dimensionless end-shortening relationships can be rearranged as the sum of shortening
deformations (dxL; dyL) due to mechanical load and those (dxT ; dyT ) due to thermal load

dx ¼ ðdxL � dxTlT Þ=g24b
2; dy ¼ ðdyL � dyTlT Þ=g24b

2; ð32Þ

where

dxL ¼ �
Z 1

0

Z 1

0

g224b
2 @

2F

@y2
� g5

@2F

@x2
þ g24 g511

@Cx

@x
þ g233b

@Cy

@y

� ��

� g24 gp18

@2W

@x2
þ gp28b

2 @
2W

@y2

� ��
dx dy;

dyL ¼ �
Z 1

0

Z 1

0

@2F

@x2
� g5b

2 @
2F

@y2
þ g24 g512

@Cx

@x
þ g518b

@Cy

@y

� ��
þ g0g24W

� g24 gp16

@2W

@x2
þ gp26b

2 @
2W

@y2

� ��
dy dx;

dxT ¼ �
1

g24b
2

Z 1

0

Z 1

0

ðg224gT1 � g5gT2Þ dx dy;

dyT ¼ �
1

g24b
2

Z 1

0

Z 1

0

ðgT2 � g5gT1Þ dy dx: ð33Þ

In the above equations dimensionless quantities gijk are defined as in Appendix A.

3. Solution procedure

3.1. Semi-analytical DQ approximation

Similarly as in our previous work [13–15], a semi-analytical approach is used in the present
analysis. According to the differential quadrature rule, solutions of W, F, Cx and Cy can be
approximated along x-axis in terms of their function values at a number of pre-selected sampling
points by

fW ;F ;Cx;Cyg ¼
XN

j¼1

ljðxÞfWj;Fj;Cxj ;Cyjg; ð34Þ
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and their kth partial derivatives with respect to x at a sampling point xi (i ¼ 1;y;N) can also be
expressed as

@k

@xk
fW ;F ;Cx;Cygjx¼xi

¼
XN

j¼1

C
ðkÞ
ij fWj;Fj;Cxj;Cyjg; ð35Þ

where

Wj ¼ W ðxj; y; tÞ; Fj ¼ Fðxj; y; tÞ;

Cxj ¼ Cxðxj; y; tÞ; Cyj ¼ Cyðxj; y; tÞ: ð36Þ

Recursive formula for weighting coefficient C
ðkÞ
ij and the Lagrange interpolation polynomial

ljðxÞ can be found in Ref. [16]. The sampling point system in the present analysis is chosen to be
the Chebyshev–Gauss–Lobatto spacing grid as

x1 ¼ 0:0; x2 ¼ 0:0001; xj ¼
1

2
1 � cos

pðj � 2Þ
N � 3

� �
;

xN�1 ¼ 0:9999; xN ¼ 1:0: ð37Þ

Applying Eqs. (34)–(37) to the governing equations (25)–(28) yields 4N sets of equations in
terms of Wj, Fj, Cxj and Cyj; which are to be expanded in series forms as following:

Wj ¼
XM

m¼1

ajmðtÞWjmðyÞ; ð38aÞ

Fj ¼ �
y2

2
lx þ

x2

2
ly

� �
þ

XM

m¼1

bjmðtÞFjmðyÞ; ð38bÞ

Cxj ¼
XM

m¼1

cjmðtÞCxjmðyÞ; ð38cÞ

Cyj ¼
XM

m¼1

djmðtÞCyjmðyÞ; ð38dÞ

in which M denotes total number of truncated series, ajmðtÞ; bjmðtÞ; cjmðtÞ and djmðtÞ stand for the
generalized co-ordinates. Wjm; Fjm; Cxjm and Cyjm are to be modelled according to the associated
boundary constraints at y ¼ 0; 1; they are

Simply supported:

Wjm ¼ sinðmpyÞ; ð39aÞ

Fjm ¼ sin amy � sinh amy � xmðcos amy � cosh amyÞ; ð39bÞ

Cxjm ¼ sinðmpyÞ; Cyjm ¼ cosðmpyÞ; ð39cÞ

Clamped:

Wjm ¼ sin amy � sinh amy � xmðcos amy � cosh amyÞ; ð40aÞ
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Fjm ¼ sin amy � sinh amy � xmðcos amy � cosh amyÞ; ð40bÞ

Cxjm ¼ sinðmpyÞ; Cyjm ¼ sinðmpyÞ; ð40cÞ

where xm ¼ ðsin am � sinh amÞ=ðcos am � cosh amÞ; am ¼ ð2m þ 1Þp=2:
Applying the Galerkin procedure after substituting Eq. (39) or (40) into the resulted 4N sets of

equations leads to a linear algebraic system in matrix form as

M .g þ ðK0 þ Ks þ Kd cos ytÞg ¼ 0; ð41Þ

where M is ‘the mass matrix’, K0 is ‘the elastic stiffness matrix’, Ks and Kd are ‘the geometric
stiffness matrices’ associated with the static component ls and the oscillating component ld ;
respectively, g is composed of ajmðtÞ; bjmðtÞ; cjmðtÞ and djmðtÞ at each nodal line.

3.2. Free vibration

Note that in the absence of ld ; Eq. (41) reduces to an eigenvalue system for FGM cylindrical
panels initially stressed by ls: Several methods can be used to obtain natural frequencies and
corresponding modes [17]. To this end, it is assumed that

gðtÞ ¼ %geiot: ð42Þ

Substituting Eq. (42) into Eq. (41), we have

fðK0 þ KsÞ � o2Mg %g ¼ 0; ð43Þ

where %g implies the corresponding mode shapes.

3.3. Parametric resonance

Eq. (41) is in the form of a second order differential equation with periodic coefficient of the
Mathieu–Hill type, representing the dynamic stability problem of FGM panels under a periodic
in-plane force. Several methods can be used to obtain points on the boundaries of the instability
regions, such as Bolotin’s method [18–28] and multiple scale method [29–31]. Here, Bolotin’s
method is used. The solutions can be sought in the following trigonometric series expansions:

g ¼
XN

k¼1;3;:::

ak sin
kyt

2
þ bk cos

kyt

2

� �
; ð44Þ

with period 2Ty; where Ty ¼ 2p=y; or

g ¼
1

2
b0 þ

XN
k¼2;4;y

ak sin
kyt

2
þ bk cos

kyt

2

� �
; ð45Þ

with period Ty; ak and bk are arbitrary time-independent vectors. Our attention will be focused on
the solutions with period 2Ty since the widths of these unstable regions are usually larger than
those associated with the solutions with period Ty and therefore are of greater practical
importance. Substitution of series expansion (44) into Eq. (41) and a term-wise comparison of
sine- and cosine-coefficients yields the following infinite systems of linear homogeneous algebraic

J. Yang, H.-S. Shen / Journal of Sound and Vibration 261 (2003) 871–893 881



equations in terms of ak:

K0 þ Ks �
1

2
Kd �

y2

4
M

� �
a1 þ

1

2
Kda3 ¼ 0; ð46aÞ

K0 þ Ks �
k2y2

4
M

� �
ak þ

1

2
Kdðak�2 þ akþ2Þ ¼ 0; kX3 ð46bÞ

and in terms of bk:

K0 þ Ks þ
1

2
Kd �

y2

4
M

� �
b1 þ

1

2
Kdb3 ¼ 0; ð47aÞ

K0 þ Ks �
k2y2

4
M

� �
bk þ

1

2
Kdðbk�2 þ bkþ2Þ ¼ 0; kX3: ð47bÞ

For non-trivial solutions, the infinite determinants of these matrix equations should be equal to
zero. Approximate solutions can be obtained by truncating the determinants, among which the
so-called ‘first approximation’ with k ¼ 1 is capable of getting solutions with sufficient accuracy.
Therefore, the first approximation is used to determine the critical pulsating frequency y through
the following eigenvalue problems:

K0 þ Ks �
1

2
Kd �

y2

4
M

����
���� ¼ 0; ð48aÞ

K0 þ Ks þ
1

2
Kd �

y2

4
M

����
���� ¼ 0; ð48bÞ

here each matrix comprises 4NM  4NM elements.
For a given axial load level, Eq. (48) delivers two critical excitation frequencies, thus

determining the unstable region bounded by two curves with a common point when ls ¼ 0:

Table 1

Dimensionless fundamental frequency of simply supported isotropic cylindrical panels

b/a Present Chern and Chao [33] Kabayashi and

Leissa [32]

N  M ¼
9 5

N  M ¼
11 5

N  M ¼
13 5

N  M ¼
15  6

0.5 1.31598 1.31597 1.31597 1.31597 1.31742 1.3360

1.0 0.55136 0.55136 0.55136 0.55136 0.55049 0.5563

1.5 0.40265 0.40266 0.40266 0.40266 0.39987 0.4044

2.0 0.35017 0.35019 0.35020 0.35019 0.34612 0.3505
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4. Numerical results and discussions

4.1. Comparison studies

For the problem under consideration, there are no suitable comparison results of FGM panels
in the literature. To ensure the efficiency and accuracy of the present methodology, three
illustrative examples were solved for free vibration analysis and dynamic instability of
homogeneous isotropic cylindrical panels.

Example 1. We first calculate the dimensionless fundamental frequencies on ¼ Oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1 � n2Þ=E

p
for simply supported isotropic cylindrical panels (a=R ¼ 0:1; a=h ¼ 10; n ¼ 0:3) with varying
aspect ratios (b=a ¼ 0:5; 1:0; 1:5; 2:0). The results are listed in Table 1. The first order shear
deformation shell theory solutions by Kobayashi and Leissa [32] and three-dimensional elasticity
solutions by Chern and Chao [33] are also provided for direct comparisons. Excellent agreement is
observed between the three.

Example 2. In Table 2, first seven natural frequencies of clamped isotropic aluminum cylindrical
panels are presented, together with the experimental and finite element results obtained by Olson
and Lindberg [34], the spline finite strip solutions by Cheung et al. [35] and three-dimensional
elasticity solutions by Liew et al. [36] for comparison. The computation data are: a ¼ 4:0 in,
b0 ¼ 3:0 in, R ¼ 30:0 in, h ¼ 0:013 in, E ¼ 107 psi, r ¼ 0:096 lbf/in3, n ¼ 0:3; where b0 is the chord
length. Our results are in close agreement with the existing ones.

Example 3. We now turn our attention to the parametric resonance of simply supported, shear
deformable isotropic cylindrical panel (b0=R ¼ 0:5; a=R ¼ 2; n ¼ 0:3) under combined static and
periodic axial excitation. Results showed that, in this example, the two boundaries of each
unstable region are basically straight lines that form a downward triangle. This makes it
appropriate to define the unstable region by means of the point of origin and the subtending angle
Y. Tables 3 and 4 give, respectively, the first four unstable regions for panels (h=R=0.03, 0.04,
0.05) under axial tensile load ls ¼ �0:5lcr and compressive load ls ¼ 0:5lcr; where lcr is the
critical buckling load of the panels. Comparisons have been made between the classical shell

Table 2

Natural frequencies of clamped isotropic cylindrical panels (in Hz)

Mode sequence Exp. [34] FEM [34] FSM [35] 3-D [36] Present (N  M)

115 135 156 177

1 814 870 874 872.4 826.5 871.6 871.6 871.6

2 940 958 963 960.3 940.1 961.1 961.2 961.1

3 1260 1228 1298 1292.5 1196.6 1270.9 1280.5 1279.6

4 1306 1363 1369 1364.8 1295.8 1384.7 1370.4 1367.2

5 1452 1440 — 1443.0 1368.0 1463.4 1445.9 1446.3

6 1770 1756 — 1761.1 1708.2 1717.3 1761.1 1763.2

7 1802 1780 — 1786.8 1769.2 1812.0 1788.0 1782.4
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Table 3

First four unstable regions of a simply supported isotropic cylindrical panel under axial tensile loading ls ¼ �0:5lcr

Unstable regions Point of origin yn Angle subtended Y

CST [37] FSDT [37] HSDT (Present) Diff % CST [37] FSDT [37] HSDT (Present) Diff %

h=R ¼ 0:03
First 0.7650871 0.7605915 0.7545067 0.80 0.0256951 0.0258446 0.0260106 0.64

Second 1.0722443 1.0664572 1.0589919 0.70 0.0726175 0.0729988 0.0733171 0.44

Third 1.5076184 1.4988417 1.4883498 0.71 0.1162854 0.1169408 0.1176410 0.60

Fouth 1.9975838 1.9832372 1.9634048 1.00 0.1567566 0.1578453 0.1592543 0.89

h=R ¼ 0:04
First 0.9976844 0.9870142 0.9810921 0.60 0.0263148 0.0265958 0.0267864 0.71

Second 1.3274792 1.3235779 1.3116656 0.90 0.0777726 0.0785666 0.0792208 0.87

Third 1.8313471 1.8102993 1.7921963 1.00 0.1277765 0.1292115 0.1306461 1.11

Fourth 2.4111464 2.3769167 2.3521475 1.48 0.1732664 0.1756690 0.1785070 1.61

h=R ¼ 0:05
First 1.2308019 1.2100794 1.1958189 1.18 0.0266880 0.0271407 0.0274425 1.10

Second 1.6062721 1.5790699 1.5548582 1.53 0.0810604 0.0824241 0.0835097 1.32

Third 2.1621062 2.1209467 2.0876162 1.58 0.1354157 0.1379647 0.1398180 1.43

Fourth 2.8345409 2.7679303 2.7028754 2.35 0.1843507 0.1886388 0.1929011 2.26

Table 4

First four unstable regions for a simply supported isotropic cylindrical panel under axial compressive loading ls ¼
0:5lcr

Unstable regions Point of origin yn Angle subtended Y

CST [37] FSDT [37] HSDT (Present) Diff % CST [37] FSDT [37] HSDT (Present) Diff %

h=R ¼ 0:03
First 0.6532618 0.6483488 0.6415411 1.05 0.0300034 0.0302256 0.0304976 0.90

Second 0.7182320 0.7110948 0.7014239 1.36 0.1062933 0.1072842 0.1083463 0.99

Third 0.9171988 0.9060940 0.8914153 1.62 0.1852367 0.1872843 0.1898126 1.35

Fourth 1.1957598 1.1776127 1.1562979 1.81 0.2528890 0.2563688 0.2602399 1.51

h=R ¼ 0:04
First 0.8854011 0.8739775 0.8627906 1.28 0.0296026 0.0299832 0.0303579 1.25

Second 0.9715799 0.9549933 0.9412414 1.44 0.1057441 0.1074819 0.1089544 1.37

Third 1.2023632 1.1760791 1.1529103 1.97 0.1903083 0.1942196 0.1979098 1.90

Fourth 1.5495172 1.5063851 1.4718888 2.29 0.2626528 0.2694866 0.2752536 2.14

h=R ¼ 0:05
First 1.1183180 1.0964077 1.0760145 1.86 0.0293425 0.0299214 0.0304390 1.73

Second 1.2346733 1.2030459 1.1769398 2.17 0.1045971 0.1072303 0.1093749 2.00

Third 1.5135089 1.4632239 1.4238632 2.69 0.1904003 0.1965104 0.2013249 2.45

Fourth 1.9419439 1.8595201 1.8046643 2.95 0.2639889 0.2747844 0.2822311 2.71
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solutions (CST), the first shear deformation shell theory solutions (FSDT) by Ng et al. [37] and
the present ones (HSDT). Again, excellent correlation is achieved.

In Tables 3 and 4, the percentage differences (diff. %) between the FSDT results and HSDT
results are also displayed. As expected, compared with CST and FSDT results, the present HSDT
formulation produces more conservative points of origin and wider unstable regions as the panel
becomes thicker. The differences increase as h=R is increased. This is due to the fact that the
transverse shear and rotary inertia will have more effect on a thicker panel. It is also worthwhile to
note that, in the present analysis, only two 4NM-order eigenvalue systems in Eq. (48) are to be
solved to define the unstable regions.

Convergence studies are also undertaken in both Tables 1 and 2 by increasing N and M:
Results show that the present method is well converged to produce results with sufficient accuracy
when NX15 and MX6: Thus, N  M ¼ 15 6 has been used in all the following computations.

4.2. Free vibration results

In what follows, parametric studies are carried out to supply information on both free vibration
and parametric resonance of shear deformable FGM cylindrical panels subjected to combined
thermal and mechanical loading. To this end, silicon nitride and stainless steel are chosen to be the
constituent materials of the FGM panel, referred to as Si3N4/SUS304. Their material properties
P; such as Young’s modulus E; the Poisson ratio n; coefficient of thermal expansion a; are
temperature dependent and can be expressed as [38]

P ¼ P0ðP�1T�1 þ 1þ P1T þ P2T2 þ P3T3Þ; ð49Þ

in which T ¼ T0 þ DT ; P0; P�1; P1; P2 and P3 are the coefficients of temperature T (K) and are
unique to each constituent. Typical values for silicon nitride and stainless steel are listed in
Table 5.

For the sake of brevity, a clockwise notation starting from y ¼ 0 is employed. Symbol ‘CSCF’,
for example, identifies a panel clamped at y ¼ 0; 1; simply supported at x ¼ 0; and free at x ¼ 1: In
Tables 6 and 7 and Fig. 2, on ¼ Oa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0h=D0

p
refers to the dimensionless natural frequencies of

Table 5

Temperature-dependent coefficients of elastic modulus E (GPa), the Poisson ratio n; mass density r (kg/m3) and linear

thermal expansion a (1/K) for ceramic and metal

Material P�1 P0 P1 P2 P3 P (at T ¼ 300K)

E SUS304 0 201.04e9 3.079e–4 �6.534e–7 0 207.7877e9

Si3N4 0 348.43e9 �3.070e–4 2.160e–7 �8.946e–11 322.2715e9

n SUS304 0 0.3262 �2.002e–4 3.797e–7 0 0.31776

Si3N4 0 0.2400 0 0 0 0.24000

a SUS304 0 12.330e–6 8.086e–4 0 0 15.3210e–6

Si3N4 0 5.8723e–6 9.095e–4 0 0 7.4745e–6

r SUS304 0 8166 0 0 0 8166

Si3N4 0 2370 0 0 0 2370
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the FGM cylindrical panels. r0 and D0; selected to be r of stainless steel and the Dn
11 of pure

stainless-steel panel (a=h ¼ 10) at T0 ¼ 300K, serve as the reference values of mass density and
Dn

11; respectively.
Table 6 gives the first four dimensionless natural frequencies of clamped FGM cylindrical

panels (a=R ¼ 0:1; a=h ¼ 10; a ¼ b) movable at x ¼ 0; 1; with various material compositions and
initially stressed by different thermo-mechanical loadings. The fully Si3N4 and SUS304 cases
correspond to isotropic plates in nature, while the other three cases (n ¼ 0:2; 2:0; 10:0) are for the
graded panels with two constituent materials. It is obvious from Table 5 that the bending stiffness
is the maximum for the ceramic panel, the minimum for the metallic panel, and degrades
gradually as the volume fraction index n increases. Three sets of mechanical loads are considered,
including lx ¼ 0 for no in-plane loads, lx ¼ �5p2 for axial stretching and lx ¼ 5p2 for axial
compression. The thermal loading is due to uniform temperature rise DT ¼ 0 and 300K. It is
observed that, both initial axial compression and temperature rise will result in a decrease in the
natural frequency o	: In contrast, an initial axial tension will help increase the natural frequency.
Among the FGM panels, the fully silicon nitride one has the highest o	 while its fully stainless-
steel counterpart has the lowest o	: Moreover, o	 decreases as the volume fraction index n

increases.
Table 7 compares the first eight dimensionless frequencies of FGM cylindrical panels

(a=R ¼ 0:1; a=h ¼ 10; a=b ¼ 1:0; 2.0, n ¼ 0:2; 2.0) with different boundary conditions (CCCC,

Table 6

Dimensionless frequency parameters on for clamped, thermo-mechanically pre-stressed FGM cylindrical panels

movable at x ¼ 0; 1

Material composition DT ¼ 0 DT ¼ 300K

1 2 3 4 1 2 3 4

Without axial load

Si3N4 74.518 144.663 145.740 206.992 72.446 140.642 141.687 201.238

n ¼ 0:2 57.479 111.717 112.531 159.855 55.739 108.338 109.126 155.010

n ¼ 2:0 40.750 78.817 79.407 112.457 39.369 76.106 76.675 108.541

n ¼ 10:0 35.852 69.075 69.609 98.386 34.571 66.539 67.055 94.709

SUS304 32.761 63.314 63.806 90.370 31.511 60.846 61.321 86.805

Under axial tension lx ¼ �5p2

Si3N4 95.203 163.281 179.996 236.973 92.556 158.741 174.993 230.386

n ¼ 0:2 73.571 126.379 138.967 183.126 71.374 122.620 134.782 177.625

n ¼ 2:0 52.572 90.067 98.600 129.770 50.875 87.153 95.292 125.419

n ¼ 10:0 46.472 79.421 86.760 114.067 44.924 76.747 83.699 110.035

SUS304 42.463 72.828 79.342 104.614 40.950 70.229 76.355 100.697

Under axial compression lx ¼ 5p2

Si3N4 42.592 95.435 125.338 171.210 41.405 92.782 121.851 166.450

n ¼ 0:2 32.558 73.784 96.379 132.061 31.502 71.517 93.377 127.989

n ¼ 2:0 22.030 50.936 66.809 91.562 21.066 49.015 64.257 88.133

n ¼ 10:0 18.783 43.925 57.918 79.330 17.811 42.054 55.457 76.028

SUS304 17.212 40.645 53.058 73.106 16.268 38.847 50.659 69.917
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Table 7

Dimensionless frequency parameters on of FGM cylindrical panels movable at x ¼ 0; 1 and under uniform temperature

change DT ¼ 300K

Boundary conditions a/b n Mode sequence

1 2 3 4 5 6 7 8

CCCC 1.0 0.2 55.739 108.338 109.126 155.010 172.031 183.588 213.659 224.500

2.0 39.369 76.106 76.675 108.541 122.134 128.227 150.744 156.468

2.0 0.2 136.982 173.924 236.411 312.216 318.897 343.103 394.384 414.717

2.0 95.728 121.397 164.501 215.687 220.969 236.875 271.816 286.152

CSCC 1.0 0.2 49.748 95.994 106.266 146.968 167.888 170.421 208.271 212.645

2.0 35.196 67.666 74.709 103.101 117.718 121.056 147.180 148.596

2.0 0.2 134.689 166.712 225.027 305.234 311.332 339.991 388.655 401.580

2.0 94.136 116.485 156.916 212.032 215.096 234.814 268.078 277.582

CSCS 1.0 0.2 45.426 84.741 104.006 139.840 152.513 168.917 201.219 203.424

2.0 32.168 59.909 73.149 98.244 107.342 120.062 140.967 143.953

2.0 0.2 132.934 160.431 214.131 291.749 310.548 337.165 383.200 387.586

2.0 92.914 112.174 149.608 203.174 214.569 232.933 264.505 268.511

CFCF 1.0 0.2 35.182 41.517 66.856 92.537 101.326 120.071 129.228 157.980

2.0 24.881 29.139 47.162 65.017 70.885 84.830 90.520 112.299

2.0 0.2 125.100 130.575 150.472 191.820 256.154 300.656 307.389 330.212

2.0 87.362 90.986 105.009 134.112 179.325 207.612 212.087 228.056

CSCF 1.0 0.2 36.996 55.284 95.012 101.745 115.432 158.729 160.566 174.568

2.0 26.111 39.018 66.694 71.872 80.970 111.316 114.046 122.955

2.0 0.2 126.662 140.698 175.318 234.905 302.686 316.688 319.094 352.586

2.0 88.412 98.222 122.539 164.222 208.980 220.382 220.841 243.545
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0
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3

2

1
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1: Si3N4
2: n = 0.2
3: n = 2.0
4: n = 10.0
5: SUS304

CCCC;  ∆T=300K
a/R = 0.1;   a/b = 1.0

7550

ω
*

Fig. 2. Relationships of fundamental frequency with side-to-thickness ratio for Si3N4/SUS304 cylindrical panels under

uniform temperature rise.
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CSCC, CSCS, CFCF, CSCF), movable at x ¼ 0; 1, free from in-plane load and under uniform
temperature rise DT ¼ 300 K: Results show that the fully clamped cylindrical panel has the
highest, whereas the CFCF one has the lowest natural frequency values, implying that an FGM
panel with greater supporting rigidity will have higher vibrating frequencies. Meanwhile, a
dramatic increase in o	 takes place as b increases from 1.0 to 2.0.

Fig. 2 depicts variation of fundamental frequency of completely immovable, clamped FGM
cylindrical panels (a=R ¼ 0:1; a=b ¼ 1:0) with varying side-to-thickness ratio a=h and under
uniform temperature rise DT ¼ 300 : K: As can be seen, the frequency is greatly influenced in that
o	 decreases steadily as a=h becomes larger, indicating that a thicker panel possesses higher
vibrating frequencies.

4.3. Parametric resonance results

In the following numerical illustrations, parametric resonance of Si3N4/SUS304 cylindrical
panels (a=R ¼ 0:2) under combined static and periodic axial load and in thermal environments is
investigated. Typical results are plotted in Figs. 3–8. It is preferred that ad ¼ ld=ls and yn ¼
ya2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0h=D0

p
are used as dynamic load level and the dimensionless excitation frequency.

In Figs. 4–8, the volume fraction index n ¼ 0:2; 2.0; in Figs. 3 and 5–8, the panel is clamped; in
Figs. 3, 4 and 6–8, the panel is undergoing a uniform temperature rise DT ¼ 300 K; in Figs. 3–5, 7
and 8, a=h ¼ 10; in Figs. 3–6 and 8, a=b ¼ 1:0: In all examples, the panel is initially loaded by an
axial compression ls ¼ 2p2: Except in Fig. 8, the panel is movable at x ¼ 0; 1 and immovable at
the other two sides.

Fig. 3 gives the unstable regions of thermo-mechanically stressed clamped FGM cylindrical
panels with various volume fraction index n: The point of origin tends to be lower and the
unstable region becomes narrower as n increases. This is due to the fact that the bending stiffness
is the maximum for the ceramic panel, the minimum for the metallic panel, and degrades
gradually as n increases.

To investigate the effect of out-of-plane boundary condition on the dynamic instability of
thermo-mechanically stressed FGM cylindrical panels, unstable regions are plotted and compared

40 60 80 100 120 140

5 4 3 2 1
1: Si3N4
2: n = 0.2
3: n= 2.0
4: n = 10.0
5: SUS304

0.0

0.2

0.4

0.6

0.8

a/b =1.0; a/h =10;  a/R = 0.2; ∆T = 300K; λs = 2π2

α d

θ*

Fig. 3. Principal unstable regions of clamped Si3N4/SUS304 cylindrical panels with different material compositions.
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Fig. 4. Principal unstable regions of Si3N4/SUS304 cylindrical panels with different out-of-plane boundary conditions

and under uniform temperature rise.
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Fig. 5. Effect of temperature change on the principal unstable region of clamped Si3N4/SUS304 cylindrical panels.
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Fig. 6. Effect of side-to-thickness ratio on the principal unstable regions of clamped Si3N4/SUS304 cylindrical panels.
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in Fig. 4 for CCCC, CSCS, and CFCF panels. Results demonstrate that the panel with two
opposite free edges, namely, CFCF panel, has the lowest point of origin and smallest unstable
region, and a fully clamped has the highest point of origin and largest unstable region.
Noteworthy is that the unstable regions are almost the same for CCCC and CSCS panels
although the latter has much lower point of origin.

Fig. 5 shows the significant effect of temperature change on the dynamic instability of FGM
cylindrical panels under initial thermo-mechanical loading. The temperature rise is chosen to be
DT=0, 300 and 500K. As expected, the unstable region moves to the left as temperature rises.
This is due to more degradation in panel stiffness under higher environment temperature.

In Fig. 6, we examine the effect of side-to-thickness ratio on dynamic instability of FGM
cylindrical panels. For this purpose, the side-to-thickness ratio is chosen as a=h ¼ 10; 20 and 100.
Results indicate that the points of origin decrease dramatically and the unstable regions are
greatly narrowed as a=h changes from 10 to 100, i.e., as the panel becomes thinner.
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Fig. 7. Effect of aspect ratio on the principal unstable region of clamped Si3N4/SUS304 cylindrical panels.
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Fig. 8. Effect of in-plane boundary constraints on the principal unstable region of clamped Si3N4/SUS304 cylindrical

panels.
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Effect of panel aspect ratio b on parametric resonance of thermo-mechanically stressed FGM
cylindrical panels is investigated in Fig. 7. It is found that the points of origin become much
greater when b=2.0. However, the corresponding unstable regions become a little smaller.

In Fig. 8, unstable regions of clamped FGM cylindrical panels with all edges movable and those
movable at x ¼ 0; 1 only are compared. It is observed that in-plane boundary conditions do have
some influence, though not so significant, on parametric resonance of thermo-mechanically
stressed FGM cylindrical panels.

5. Conclusions

Both free vibration and parametric resonance of FGM cylindrical panels subjected to thermo-
mechanical loads have been investigated in this paper. Theoretical formulations are based on
Reddy’s higher order shear deformation shell theory to account for rotary inertias and parabolic
distribution of the transverse shear strains through the panel thickness. Thermo-mechanical load
consists of a steady temperature change, static and periodically pulsating forces in axial direction.
Non-linear temperature dependency of material properties is also taken into account. A semi-
analytical approach, which makes use of differential quadrature approximation and Galerkin
technique, has been developed to obtain the natural frequency parameters of FGM panels. In the
presence of dynamic axial loading, unstable regions are determined by using Bolotin’s method.
Numerical results for silicon nitride/stainless-steel cylindrical panels are presented in both tabular
and graphical forms. A parametric study is also carried out, highlighting the effects of material
composition, boundary conditions, initial thermal and/or mechanical axial loads as well as the
panel geometry parameters on the dynamic characteristics. Results presented herein for FGM
cylindrical panels are not available in the literature, and therefore, should be of interest to the
engineering community.
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Appendix A

ðg110 ; g112 ; g114Þ ¼ c1½Fn

11; ðF
n

12 þ Fn

21 þ 4Fn

66Þ=2;F
n

22�=Dn

11;

ðg120 ; g122Þ ¼ ½ðDn

11 � c1Fn

11Þ; ðD
n

12 � c1Fn

12 þ 2Dn

66 � 2c1Fn

66Þ�=Dn

11;

ðg131; g133Þ ¼ ½ðDn

12 � c1Fn

21 þ 2Dn

66 � 2c1Fn

66Þ; ðD
n

22 � c1Fn

22Þ�=Dn

11;

ðg140 ; g142 ; g144Þ ¼ c1½Bn

21; ðB
n

11 þ Bn

22 � 2Bn

66Þ;B
n

12�=ðD
n

11Dn

22An

11An

22Þ
1=4;

ðg212; g214Þ ¼ ½ð2An

12 þ An

66Þ=2;A
n

11�=A	
22;
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ðg220 ; g222Þ ¼ ½ðBn

21 � c1En

21Þ;B
n

11 � Bn

66 � c1ðEn

11 � En

66Þ�=ðD
n

11Dn

22An

11An

22Þ
1=4;

ðg231 ; g233Þ ¼ ½Bn

22 � Bn

66 � c1ðEn

22 � En

66Þ; ðB
n
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12Þ�=ðD
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11Dn

22An

11An

22Þ
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ðg240 ; g242 ; g244Þ ¼ c1½En

21; ðE
n

11 þ En

22 � 2En

66Þ;E
n

12�=ðD
n

11Dn

22An

11An

22Þ
1=4

ðg310 ; g312Þ ¼ c1½ðFn

11 � c1Hn

11Þ; ðF
n

21 þ 2Fn

66 � c1ðHn

12 þ 2Hn

66ÞÞ�=ðD
n

11Dn

22An

11An

22Þ
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66Þ þ c2
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11;
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where %ST ¼ %MT � c1 %P
T:
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